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Abstract

The main object of this article is the estimation of the unknown population

parameters and reliability function for the generalized Bilal model under Type-II

censored data. Both maximum likelihood and Bayesian estimates are considered.

A Gibb’s sampling procedure is used to draw Markov Chain Monte Carlo samples,

which have been used to compute the Bayes estimates and also to construct their

corresponding credible intervals with the help of two different importance sampling

techniques. A simulation study is carried out to compare the accuracy of the re-

sulting estimators. Application to a real data set is considered for the sake of

illustration.
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1 Introduction

The generalized Bilal (GB) model coincides with the distribution of the median in a sample

of size three from the Weibull distribution. It was first introduced by Abd–Elrahman [1].

∗E-mail address: <ayman275@aun.edu.eg>.
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He showed that its failure rate function can be upside-down bathtub shaped. The failure

rate can also be decreasing or increasing. Abd–Elrahman [1] presented a comparison

among the GB and some other models. Where, following Vargo et al. [2], Glen [3], and

Pasquale Erto [4], he plotted coefficient of variation (CV) against skewness (SK) for the

various distribution models. The plot usually includes all possible pairs (CV, SK) that

a model can attain. The set of values that the GB (CV, SK) pairs can assume fall in

between the Weibull and the Log-normal models, helping to see some benefits from the

GB distribution. Therefore, the GB model can be used for several practical data analysis.

Suppose that n items are put on a life–testing experiment and we observe only the

first r failure times, say x1 < x2 < · · · < xr. Then, x = (x1, x2, · · · , xr)
′ is called a

Type–II censored sample. The remaining (n−r) items are censored and are only known

to be grater than xr. This article will be based on a Type–II censored sample drawn

from the GB distribution. Type–II censoring have been discussed by too many authors,

among them, Ahmad et al. [5], Raqab [6], Wu et al. [7], Chana et al. [8], ElShahat and

Mahmoud [9] and Abd-Elrahman and Niazi [10].

Likewise the Weibull distribution, the CDF of the GB distribution can take any of the

following functional forms:

FX(x; β, λ) = 1− e−2β xλ
(
3− 2 e−β xλ

)
, x > 0, (β, λ > 0), (1)

FX(x; θ, λ) = 1− e−2 (x/θ)λ
(
3− 2 e− (x/θ)λ

)
, x > 0, (θ, λ > 0), (2)

FX(x; θ1, λ) = 1− e−2xλ/θ1
(
3− 2 e−xλ/θ1

)
, x > 0, (θ1, λ > 0),

FX(x; θ2, λ) = 1− e−2 (θ2 x)
λ
(
3− 2 e− (θ2 x)

λ
)
, x > 0, (θ2, λ > 0).

It is well known that, based on the maximum likelihood method, the results of any

statistical inference that may be obtained by using one of these forms is applied to the

other functional forms. This is true by using some re–parametrization techniques together

with the Invariance property of the maximum likelihood estimators, see e. g. Dekking

et al. [11]. In this article, Formula (1) is used as the CDF of the GB distribution. The

corresponding PDF and reliability function are, respectively, given by:

fX(x; β, λ) = 6 β λxλ−1e−2β xλ
(
1− e−β xλ

)
, x > 0, (β, λ > 0) (3)
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and

s(t) = e−2β tλ
(
3− 2 e−β tλ

)
. (4)

The qth quantile, xq, is an important quantity, especially for generating random variates

using the inverse transformation method. In view of (1), following Abd-Elrahman [12],

xq of the GB distribution is given by:

xq =

[
1

β
ln

(
1

γ(q)

)]1/λ
, (5)

where

γ(q) =


0.5 + sin(aq + π/6) if 0 < q < 0.5,

0.5 if q = 0.5,

0.5− cos(aq + π/3) if 0.5 < q < 1,

for aq=
1
3
arctan(

2
√

q(1−q)

2 q−1
).

The layout of this paper is organized as follows: In Section 2, the maximum likeli-

hood (ML) estimates of the parameters β and λ as well as the reliability function s(t)

is discussed. By using the missing information principle, Variance–covariance matrix of

the unknown population parameters is obtained, which have been used to construct the

asymptotic confidence intervals for each of the unknown parameters and reliability func-

tion. In Section 3, two different importance sampling techniques are introduced. Each

one have been used to compute the Bayes estimates of the parameters (β, λ) and the

reliability function s(t); and also to construct their corresponding credible intervals. In

Section 4, in order to compare the proposed estimators, a simulation study has been per-

formed. Further, in Section 5, for the sake of illustration, the results of Sections 2 and 3

are illustrated via a real data analysis. Finally, we draw some concluding remarks.

2 Maximum Likelihood Estimation

It follows from (1) and (3) that, based on a given Type-II censored sample x drawn from

the GB distribution, the likelihood function of the parameters β and λ is given by:

L(β, λ|x) ∝ βrλr e−2β T1+T2 , (6)
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where

T1=(n−r) xλ
r+

r∑
j=1

xλ
j , T2=(n−r) ln(3−2 e−β xλ

r )+λ
r∑

j=1

ln(xj)+
r∑

j=1

ln(1−e−β xλ
j ) .

2.1 When λ is known

In this case, for fixed λ, say λ = λ(0), let θ = 1/β and yi = xλ(0)

i , i = 1, 2, · · · r. Then,

y1, · · · , yr is a Type-II random sample from Bilal(θ) distribution. Abd-Elrahman and

Niazi [10] established the existence and uniqueness theorem for the ML estimate (MLE)

of the parameter θ, say θ̂M . Again by using the invariance property of the ML method,

the MLE for the parameter β is then by β̂M(λ(0)) = 1/θ̂M . Clearly, β̂M(λ(0)) exists and it

is unique.

In the following, we provide an iterative technique for finding β̂M(λ(0)). In order to do

this, let

W1 =
β xλ(0)

r e−β xλ(0)
r

3− 2 e−β xλ(0)
r

, W2j =
β xλ(0)

j e−β xλ(0)

j

1− e−β xλ(0)

j

, j = 1, 2, · · · , r. (7)

In view of (6) and (7), the likelihood equation of β is then given by:

∂ lnL(β, λ(0)|x)
∂ β

=
r + 2 (n−r)W1 +

∑r
j=1W2j

β
− 2

(
(n−r) xλ(0)

r +
r∑

j=1

xλ(0)

j

)
.

For ν = 0, 1, 2, · · · , we calculate β̂M(λ(0)) by using the following formula:

β̂
(ν+1)
M (λ(0)) =

r + 2 (n−r)W1 +
∑r

j=1W2j

2
(
(n−r)xλ

r +
∑r

j=1 x
λ
j

)
∣∣∣∣∣∣
β=β̂

(ν)
M (λ(0)), λ=λ(0)

, (8)

iteratively until some level of accuracy is reached.

Remark 1 Note that, all of the functions W1 and W2j, j = 1, 2, · · · , r, which appear

in (8), need to have some initial value for β, say β̂(0). This initial value can be obtained

based on the available Type–II censored sample as if it is complete, see Ng et al [13]. We

use the moment estimator of β as a starting point in the iterations (8). That is, in view

of (3), β̂(0) is given by
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β̂(0) =
5 r

6
r∑

i=1

xλ(0)

i

. (9)

2.2 When β is known

When β is assumed to be known, say β(0), it follows from (6) that, the likelihood equation

of λ is given by

∂ lnL(β(0), λ|x)
∂ λ

=
r

λ
−2 (n−r) ln(xr)

(
β(0)xλ

r−W1

)
+

r∑
j=1

ln(xj)
(
1−2 β(0)xλ

j +W2j

)
, (10)

where W1 and W2j, j=1, 2, · · · , r, are as given by (7) after replacing β, λ(0) by β(0) and λ,

respectively. In order to established the existence and uniqueness of the MLE for λ, the

following theorem is needed.

Theorem 2.1 For a given fixed value of the parameter β=β(0), the MLE for the param-

eter λ, λ̂M(β(0)), exists and it is unique.

Proof. See Appendix.

The MLE λ̂M(β(0)) can be iteratively obtained by using Newton’s method, i. e.,

λ̂
(ν+1)
M (β(0)) = λ̂

(ν)
M (β(0))−

{
λG1(β

(0), λ|x)
λG2(β(0), λ|x) + G1(β(0), λ|x)

}∣∣∣∣
λ=λ̂

(ν)
M (β(0))

, (11)

for ν = 0, 1, 2, · · · , where G1(·, λ|x) is the first derivative of lnL(·, λ|x) as given by (10);

and G2(·, λ|x) is the second derivative, given in Appendix, with respect to (w.r.t.) λ.

Remark 2 Again note that, we have only a Type–II censored sample, but the sample CV

can be calculated based on this data as if it is complete. Equating the sample CV with its

corresponding CV from the population would results in an equation of λ only. Its solution

provides a good initial value for λ, λ̂
(0)
M , that can be used as a starting point (11). This

technique have been used by, e. g. Kundu and Howlader [14] and Abd-Elrahman [1].

Here, the population CV of the GB distribution is given by

C(λ) =

√
(3m2 − 2m2) Γ (m2)

(3m1 − 2m1)2 (Γ (m1))
2 − 1, m1 = 1 +

1

λ
, m2 = 1 +

2

λ
. (12)
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2.3 When both β and λ are unknown

In this case, first an initial value for λ, λ̂(0), can be obtained as described in Section 2.2.

Once λ̂(0) is obtained, an initial value for the parameter β, β̂(0), can be calculated as the

right hand side of (9) after replacing λ(0) by λ̂(0).

Based on the initials β̂(0) and λ̂(0), an updated value for β, β̂(1), can be obtained by

using (8). Similarly, based on the pair (β̂(1), λ̂(0)), an updated value for λ, λ̂(1), can be

obtained by using (11), and so on. As a stopping rule, the iterations will be terminated

after some value s < 1000 with a level of accuracy, ϵ ≤ 1.2× 10−7, which is defined as

ϵ =

∣∣∣∣∣ β̂(s+1) − β̂(s)

β̂(s)

∣∣∣∣∣+
∣∣∣∣∣ λ̂(s+1) − λ̂(s)

λ̂(s)

∣∣∣∣∣ .
Hence, the limiting pair of estimates (β̂(s), λ̂(s)) exists and it is unique, which would

maximizes the likelihood function (6) w.r.t. the unknown population parameters β and λ.

That is, β̂M = β̂(s) and λ̂M = λ̂(s). Substituting the values of β and λ in (4) by their MLEs,

the MLE for reliability function s(t) at some value of t= t 0 can then be obtained.

Fisher information matrix (FIM) can be used to compute asymptotic variances of

the MLEs of the underlying population parameters. The following section concerns with

obtaining the FIM about the two unknown parameters β and λ of the GB distribution

whose CDF is given by (1) under Type–II censoring sample.

2.4 Asymptotic Variances and Covariance

Following Ng et al. [13], Abd-Elrahman [15] and Abd-Elrahman and Niazi [10], the well

known missing information principle is used for obtaining the FIM of the GB distribution

under Type–II censoring sample. In order to do this, first of all, suppose that, x =

(x1, x2, . . . , xr)
′ and Y = (Xr+1, Xr+2, . . . , Xn)

′ denote the ordered observed censored

and the unobserved ordered data, respectively. The vector Y can be thought of as the

missing data. Combine x and Y to form W, which is the complete data set. Based on

the data set W, the amount of information data provide about the unknown parameters
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θ and λ, which are involved in (2), is given by [Abd-Elrahman [1]]:

I⋆W(θ, λ)= n


1.924683λ2

θ2
−0.056056

θ

−0.056056

θ

1.790613

λ2

 . (13)

However, since:

1) In this article, we use Formula (1) as the CDF of the GB distribution. That is, the

vector of parameters (θ, λ)′ appears in (2) is transformed into (β, λ)′ with β = θ−λ.

2) This transformation is one-to-one and its inverse exists, i. e. θ = β−1/λ.

Then, IW (β, λ) can be easily obtained to be

IW(β, λ) = AT I⋆W

(
β− 1

λ , λ
)
A,

where A and AT are the transformation matrix (Jacobian) and its corresponding trans-

pose, respectively, see Schervish [16]. Here, A is given by

A =

 −
{
λβ(1+1/λ)

}−1
ln(β)

{
λ2 β1/λ

}−1

0 1


and, therefore, IW (β, λ) is given by

IW (β, λ)=


c1
β2

c2−c1 ln (β)

β λ

c2−c1 ln (β)

β λ

c3+ln (β) {c1 ln (β)−c4}
λ2

 (14)

with c1=1.92468 , c2=0.05606 , c3=1.79061 and c4=0.11211 .

Now, in order to obtain the expected ordered unobserved (missing) information matrix

IY(β, λ), we use the theorem of Ng et al. [13]. The conditional distribution of each

Xs ∈ Y given Xs>xr follows the truncated underlying distribution with left truncation

at xr, s=r+1, r+2, . . . , n. Therefore, by using (1) and (3), we have

f(x|Xs > xr; β, λ)=
6 β e−2β (xλ−xλ

r )
(
1−e−β xλ

)
(
3−2 e−β xλ

r

) , x > xr, (β, λ > 0). (15)

Hence, based on the conditional distribution (15), IY(β, λ) is then given by

IY|x(β, λ)=−(n−r) IE


∂2 ln[f(x|Xs >xr; β, λ)]

∂ β2

∂2 ln[f(x|Xs >xr; β, λ)]

∂ β ∂ λ

∂2 ln[f(x|Xs >xr; β, λ)]

∂ λ ∂ β

∂2 ln[f(x|Xs >xr; β, λ)]

∂ λ2

 . (16)

7



In order to evaluate of the expectations involved in (16), calculations for the following

expressions are required.

1) Part 1:-

I(k)(y) =

∫ ∞

y

{ln(t)}k G1(t) dt, y > 0, k = 0, 1, 2, (17)

where

G1(t) =
t e−2 t [t e−t + (1− e−t) (2− 3 e−t)]

1− e−t
.

Denote I0 = limλ→ 0+I
(0)(y) = 0.32078, I1 = limλ→ 0+I

(1)(y) = 0.00934 and

I2 = limλ→ 0+I
(2)(y) = 0.13177 . Then, (17) can be written as

I(k)(y) = Ik −
∫ y

0

{ln(t)}k G1(t) dt, y > 0, k = 0, 1, 2. (18)

The integrals involved in (18) can be calculated by using a simple numerical integration

tool, e. g. Simpson’s rule.

2) Part 2:-

I(4)(y) =

∫ ∞

y

t2 e−3 t

1− e−t
dt = I4 −

∫ y

0

t2 e−3 t

1− e−t
dt, y > 0,

= I4 −
∞∑
j=0

{∫ y

0

t2 e−(j+3) t dt

}
,

= e−3 y

∞∑
j=0

(
1 + (1 + (3 + j) y)2

)
e−j y

(3 + j)3
, (19)

where I4=limy→ 0+ I(4)(y)=−9
4
+2

∑∞
i=1 i−3=0.154114 .

Now, in view of (18) and (19), it is easy to show that the elements Ii j of IY|x(β, λ)

after division by (n−r), i, j = 1, 2, are given by

I11 =
1

β2

{
1+ 6

(
e−yI(4)(y)

3−2 e−y
− y2e−y

(3−2 e−y)2

)}
, y = β xλ

r , (20)

I12 = − 6

β λ

{
t1(xr)+

[
I(0)(y)−ln (β) I(1)(y)

]
e2 y

(3−2 e−y)

}
= I21, (21)

I22 =
1

λ2

{
1+

6
[
e2 y
[
(ln(β))2I(0)(y)−2 ln(β) I(1)(y)+I(2)(y)

]
−t2(xr)

]
(3−2 e−y)

}
, (22)
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where

t1(xr)=
β xλ

r ln
(
xλ
r

) [(
1−e−β xλ

r

)(
3−2 e−β xλ

r

)
+β xλ

re
−β xλ

r

]
(
3−2 e−β xλ

r

)
and

t2(xr)=
β xλ

r

(
ln
(
xλ
r

))2 [
β xλ

re
−β xλ

r +
(
1−e−β xλ

r

)(
3−2 e−β xλ

r

)]
(
3−2 e−β xλ

r

) .

Note that, the elements Ii j, i, j = 1, 2, constitute the Fisher information related to

each Xs, s= r + 1, r + 2, · · · , n, where Xs is distributed as in (15). Therefore, in view

of (20–22), the elements of the FIM about the parameters β and λ related to the complete

data set W can be obtained as: n limy→ 0+ Ii j, i, j = 1, 2, which give as the same results

as in (14).

Therefore, the FIM gains about the two unknown parameters β and λ from a given

Type–II censored sample, (x1, x2, · · · xr)
′, from the GB distribution whose CDF is as given

by (1), is then given by

Ix(β, λ) = IW(β, λ)− IY|x(β, λ).

Once Ix(β, λ) is calculated, at β = β̂M and λ= λ̂M , the asymptotic variance–covariance

matrix of the MLEs of the two unknown parameters β and λ is then given by

Var−Cov
(
β̂M , λ̂M

)
= I−1

x

(
β̂M , λ̂M

)
=

 σ̂2
1 σ̂12

σ̂21 σ̂2
2

 .

Again, once I−1
x

(
β̂M , λ̂M

)
is obtained, the asymptotic variance of the reliability func-

tion s(t 0) can then be calculated as the lower bound of the Cramér–Rao inequality of the

variance of any unbiased estimator for s(t 0). That is,

Var[ŝ(t 0)] =


[

∂ s(t 0)
∂ β

∂ s(t 0)
∂ λ

]
I−1
x (βM , λM)

 ∂ s(t 0)
∂ β

∂ s(t 0)
∂ λ



∣∣∣∣∣∣∣
β=β̂M , λ=λ̂M

,

= 36 t2 λ̂M
0 e−4 β̂M t

λ̂M
0

[
σ̂2
2 β̂

2
M (ln(t 0))

2+ β̂M ln(t 0) σ̂12 + σ̂2
1

](
1−e−β̂M t

λ̂M
0

)2

.
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Consequently, the asymptotic (1−α) 100% confidence intervals, ACIs, for β̂M , λ̂M and

ŝ(t 0)M are given by[
β̂M ∓ Zα

2
σ̂1

]
,

[
λ̂M ∓ Zα

2
σ̂2

]
and

[
ŝ(t 0)M ∓ Zα

2

√
Var[ŝ(t 0)]

]
, (23)

respectively, where Zα
2
is the percentile (1− α

2
) of the standard normal distribution.

3 Bayesian Estimation

In this section, Bayesian estimators for the two unknown population parameters and

reliability function are obtained. Their associated (1−α)100% highest posterior density

(HPD) credible intervals, are also obtained. Although we have discussed mainly the

squared error loss (SEL) function, any other loss function can easily be considered.

It is assumed that β and λ have two independent gamma priors with the hyper pa-

rameters a1 > 0 and b1 > 0 for β; and a2 > 0 and b2 > 0 for λ. That is,

π1(β) ∝ βa1−1e−b1β and π2(λ) ∝ λa2−1e−b2λ. (24)

Moreover, Jeffrey’s priors can be obtained as special cases of (24) by substituting a1 =

b1 = a2 = b2 = 0. The hyper parameters can be chosen to suit the prior belief of the

experimenter in terms of location and variability of the prior distribution. Combining (6)

and (24), the joint posterior density function of β and λ is then given by

π(β, λ|x) ∝ βr+a1−1e−(b1+2T1)βλr+a2−1e−b2λeT2 , (25)

where T1 and T2 are as given in (6). The Bayes estimate of any function g(β, λ), under

a SEL function, is given by

ĝ(β, λ)B =

∫∞
0

∫∞
0

g(β, λ) π(β, λ|x) dβ dλ∫∞
0

∫∞
0

π(β, λ|x) dβ dλ
. (26)

The integrals involved in (26) are usually not obtainable in closed form, but Lindley’s

approximation [17] may be used to compute such ratio of integrals. It cannot however be

used to construct credible intervals. Therefore, following Kundu and Howlader [14], we ap-

proximate (26) by using a Gibb’s sampling procedure to draw Markov Chain Monte Carlo
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samples, which can be used to compute the Bayes estimates and also to construct their

corresponding HPD credible intervals. We propose two different importance sampling

techniques, which will be denoted as IS1 and IS2. The corresponding credible intervals

can then be constructed as suggested by Chen and Shao [18].

3.1 First importance sampling technique (IS1)

The joint posterior density function (25) can be rewritten as

π(β, λ|x) ∝ π⋆
1(β|λ, x) π⋆

2(λ|x)h3(β, λ), (27)

where π⋆
1(β|λ, x) is a gamma density function given by

π⋆
1(β|λ, x) ∝ βr+a1−1e−(b1+2T1)β, (28)

π⋆
2(λ|x) is a proper density function given by

π⋆
2(λ|x) ∝

λr+a2−1e−b2λ
∏r

j=1 x
λ
j

(b1 + 2T1)
r+a1

(29)

and

h3(β, λ) =

(
1− 2

3
e−β Xλ

r

)n−r r∏
j=1

(
1− e−β Xλ

j

)
. (30)

Now, since π⋆
1(β|λ, x) follows a gamma distribution then, it is quite simple to generate

from it. On the other hand, although the function π⋆
2(λ|x) is a proper density, we can use

the method developed by Devroye [19] for generating λ. This method requires to ensure

that (29) has a log-concave density function property. Therefore, the following theorem

is needed.

Theorem 3.1 The function π⋆
2(λ|x), given by (29), has a log–concave density function.

Proof. See Appendix.

Using Theorem 3.1, a simulation based consistent estimate of g(β, λ) can be obtained

by using the following algorithm.

Algorithm 1.
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Step 1: Generate λ from π⋆
2(·|x), by using the method developed by Devroye [19].

Step 2: Generate β from π⋆
1(·|λ, x).

Step 3: Repeat Step 1 and Step 2 to obtain (βi, λi), i = 1, 2, · · · , M .

Step 4: For i = 1, 2, · · · , M , calculate gi as g(βi, λi); and ωi as
h3(βi, λi)∑M
i=1 h3(βi, λi)

, where

h3(β, λ) is as given by (30).

Step 5: Under a SEL function, an approximate Bayes estimate of g(β, λ) and its corre-

sponding estimated variance can be, respectively, obtained as

ĝ(β, λ)
IS1

=
M∑
i=1

ωi gi and V̂ [g(β, λ)]
IS1

=
M∑
i=1

ωi

(
gi − ĝ(β, λ)

IS1

)2
. (31)

3.2 Second importance sampling technique (IS2)

In this technique, we will start with another rewriting to the joint posterior density

function (25) as

π(β, λ|x) ∝ π⋆
1(β|λ, x) π⋆

3(λ|x)h4(β, λ), (32)

where π⋆
1(β|λ, x) is as given by (28), while π⋆

3(λ|x) is a gamma density function given by

π⋆
3(λ|x) ∝ λr+a2−1 exp

[
−

(
b2 +

r−1∑
j=1

ln

(
xr

xj

))
λ

]
. (33)

This is true, since b2 > 0 and xr

xj
> 1, j = 1, 2, · · · r − 1. Therefore,

h4(β, λ) =
xr λ
r

(
1− 2

3
e−β Xλ

r

)n−r∏r
j=1

(
1− e−β Xλ

j

)
(b1 + 2T1)

r+a1
. (34)

In this technique, since π⋆
1(β|λ, x) and π⋆

3(λ, x) follow a gamma distribution each, it

is quite simple to generate from them. Therefore, it is straight forward that a simulation

based consistent estimate of g(β, λ) can be obtained using the following algorithm:

Algorithm 2.

Step 1: Generate λ⋆ from π⋆
3(·|x).

Step 2: Generate β⋆ from π⋆
1(·|λ⋆, x).

Step 3: Repeat Step 1 and Step 2 to obtain (β⋆
i , λ

⋆
i ), i = 1, 2, · · · , M .

12



Step 4: For i = 1, 2, · · · , M , calculate g⋆i as g(β⋆
i , λ

⋆
i ); and ω⋆

i as
h4(β

⋆
i , λ

⋆
i )∑M

i=1 h4(β⋆
i , λ

⋆
i )
,

where h4(β, λ) is as given by (34).

Step 5: In this case, based on a SEL function, the approximate Bayes estimate of g(β, λ)

and its corresponding estimated variance can be, respectively, obtained as

ĝ(β, λ)
IS2

=
M∑
i=1

ω⋆
i g

⋆
i and V̂ [g(β, λ)]

IS2
=

M∑
i=1

ω⋆
i

(
g⋆i − ĝ(β, λ)

IS2

)2
. (35)

By using the idea of Chen and Shao [18], based on (gi, ωi) (or (g
⋆
i , ω

⋆
i )), i=1, 2, · · · ,M ,

the (1−α) 100% HPD credible interval of g(β, λ) related to IS1 (or IS2) technique can

be easily obtained.

4 Simulation Study

This section is devoted to compare the performance of the proposed Bayes estimators

with the MLEs, we carry out a simulation study using different sample sizes (n), different

effective sample sizes (r), and for different priors (non-informative and informative). For

prior information we have used: Non-informative prior, Prior 1 with a1=b1=a2=b2= 0,

and informative prior, Prior 2 with a1 = 2, b1 = 4, a2 = 3, b2 = 4. The IMSL [20]

routines DRNUN and DRNGAM are used in the generation of the uniform and gamma

random variates, respectively. In computing the estimates, first we generate β and λ

from gamma (a1, b1) and gamma (a2, b2) distributions, respectively. These generated

values are β0 = 0.5439 and and λ0 = 0.7468. The corresponding value of the reliability

function calculated at t 0=0.9 is 0.8299 . Second, we generate 5000 samples from the GB

distribution with β=0.5439 and λ=0.7468 . For the importance sampling techniques (IS1

and IS2), we set M = 15, 000, when we apply Algorithm 1 or 2. The average estimate of

ϑ⋆ and the associated mean squared error (MSEs) are computed, respectively, as:

Average =
1

5000

5000∑
k=1

ϑ⋆, MSE =
1

5000

5000∑
k=1

(ϑ⋆
k − ϑ)2 ,

where ϑ⋆ stands for an estimator (ML or Bayes) of β, λ or s(0.9), at the kth iteration;

and ϑ stands for β0=0.5439, λ0=0.7468, or s(0.9)= 0.8299. The computational results
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are displayed in Tables 1–3, where the first entry in each cell is for the average estimate

and the second entry, which is given in parentheses, is for the corresponding MSE. It has

been noticed from Tables 1–3, that

1) As expected, the MSEs of all estimates (ML or Bayes) decrease as n or r increases.

2) The Bayes estimators under Prior 1 or Prior 2 by using IS2 technique are mainly

better than the corresponding estimators by using IS1 technique in terms of in terms

of average bias and MSE.

3) In all cases, the MSEs of the MLEs are less than the corresponding Bayes estimators

under Prior 1 by using IS1 technique. On the other hand, the performances in terms

of average bias and the MSE of the Bayes estimators under Prior 1 by using IS2

technique and the MLE are very similar.

4) For small and moderate sample or censoring sizes, the Bayes estimators under Prior 2

by using IS2 technique clearly outperform the MLEs in terms of average bias and

MSE.

5) For large sample or censoring sizes, the performances in terms of average bias and the

MSE of the Bayes estimators under Prior 2 with IS2 technique and the MLE are very

similar.

5 DataAnalysis

This section concerns with illustration of the methods presented in Sections 2 and 3,

where a real data set is considered. This data set is from Hinkley [21] and consists

of thirty successive values of March precipitation in Minneapolis/St Paul. This data

is used by Barreto-Souza and Cribari-Neto [22] in fitting the generalized exponential-

Poisson distribution (GEP), and by Abd-Elrahman [1, 12] in fitting the Bilal and GB

distributions. For the complete sample case, the MLEs of β and λ, respectively, are

2.0156 and 1.2486, which are obtained as described in Section 2. The negative of the Log

Likelihood, Kolmogorov-Smirnov (K-S) statistics and its corresponding p-value related to
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these MLEs are 38.1763, 0.0532 and 1.0, respectively. These results agree with the results

in Abd-Elrahman [1]. Based on this p-value, it is clear that the GB distribution is found

to fit the data very well.

If only the first 20 data points are observed. The corresponding sample mean and

CV of this 20 observed sample points are 1.1225 and 0.4206, respectively. Equating the

right hand side of (12) by 0.4206 and solving for λ would results in the unique solution

λ 0=1.7385. Based on this value of λ, it follows from (9) that β 0 is calculated as 0.6147.

The iterative scheme, which is described in Section 2, starts with the initials λ (0)=1.7385

and β (0)=0.6147. The estimates of β and λ, converge to β̂M =0.41417 and λ̂M =1.29926

with a level of accuracy less than 1.2× 10−10 of the absolute relative errors. From these

data, we have

IW(β̂M , λ̂M) =

 336.60039 97.70695

97.70695 60.15509

 ,

and

IY(β̂M , λ̂M) =

 81.73227 53.50402

53.50402 35.95699

 .

Hence,

Ix(β̂M , λ̂M) =

 254.86812 44.20293

44.20293 24.19810

 .

Therefore, the estimated variance–covariance matrix of β̂M and λ̂M is

I−1
x (β̂M , λ̂M) =

 0.00574 −0.01049

−0.01049 0.06049

 .

Therefore, the standard errors of the MLEs of β and λ are 0.07576 and 0.24595, respec-

tively. The MLE of s(0.9) and its corresponding asymptotic standard error are 0.78002

and 0.06340, respectively. The 99% ACIs for β, λ and s(0.9) are (0.21897, 0.60938),

(0.66575, 1.93278) and (0.61672, 0.94331), respectively.

On the other hand, the simulation study given in Section 4 shows that, the Bayes es-

timators by using IS2 technique is better than the corresponding estimators obtained by
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using IS1 technique in terms of average bias and MSE. Therefore, under non-informative

prior, we compute Bayes estimate by generating an importance sample of size M=15, 000

with their corresponding importance weights according to Algorithm 2. The Bayes es-

timates of β, λ and s(0.9), and their corresponding standard errors (given in parenthe-

ses), respectively, are β̂IS2 = 0.39034 (0.04907), λ̂IS2 = 1.34910 (0.19207) and ŝ(0.9)IS2 =

0.79899 (0.03866) . The 99% HPD credible intervals for β, λ and s(0.9) are (0.24320,

0.43781), (0.85632, 1.92996) and (0.73657, 0.91060), respectively.

6 Concluding Remarks

(1) In this article, the ML and Bayes estimation of the parameters as well as the reliability

function of the GB distribution based on a given Type-II censored sample are obtained.

(2) The existence and uniqueness theorem for the ML estimator of the population pa-

rameter λ, when β is assumed to be known, is established. An iterative procedure

for finding the ML estimators of the two unknown population parameters, is also pro-

vided. The elements of the FIM are obtained, and they have been used in turn for

calculating the asymptotic confidence intervals of λ, β and the reliability function.

(3) Two different importance sampling techniques have been proposed, which can be used

for further Bayesian studies.
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It follows from (10), that the second of lnL(β, λ|x) is given by

G2(β, λ|x)=− r

λ2
− 6 (n−r)z f1(z) (ln (xr))

2

(3 ez−2)2
−

r∑
j=1

yj f2(yj) (ln (xj))
2

(eyj − 1)2
, (A1)

where z = β xλ
r , f1(z) = ez [z+ez (1−e−z) (3−2 e−z)], yj = β xλ

j , j = 1, 2, · · · , r, and

f2(yj)=2 e2 yj−5 eyj+ 3+yj e
yj .

Now, in order to prove that G2(β, λ|x) < 0, it is sufficient to show that f1(z) > 0 and

f2(yj) > 0. It is clear that f1(z) > 0 . On the other hand, by expanding the exponential

functions involved in f2(yj) about z=0, f2(yj) can be rewritten as

f2(yj) = y2j +
∞∑
k=2

ykj
(
2k+1−5 + yj

)
k!

> 0.

Therefore,
∂2lnL(β, λ|x)

∂λ2
< 0. This implies that the ML estimate, λ̂M , for λ is unique.

To insure that λ̂M exists, following Balakrishnan et al. [23], we rewrite (10) as h1(λ) =

h2(λ), where h1(λ) = r/λ and

h2(λ) = −2 (n−r) ln (xr)
(
β xλ

r−W1

)
+

r∑
j=1

ln (xj)
(
1+W2j−2 β xλ

j

)
,

where W1 and W2j, j = 1, 2, · · · , r, are as given in (10).

Note that,

ℓ1 = lim
λ→ 0+

h2(λ) = 2 (n−r) [β − η1(β)] ln (xr)−
r∑

j=1

ln (xj) [1− 2 β + η2(β)] ,

ℓ2 = lim
λ→∞

h2(λ) =

(
ℓ∞ +

r∑
i=1

ℓ2i

)
> 0,

where η1(β)=
β

3 eβ−2
, η2(β)=

β
eβ−1

,

ℓ∞ =

 0 if 0 < xr ≤ 1,

∞ if xr > 1.
, ℓ2i =

 2 ln
(

1
xi

)
if 0 < xi ≤ 1,

∞ if xi > 1.
.

Furthermore, it follows from (A1), that

∂h2(λ)

∂λ
=

6 (n−r)β xλ
rf1
(
β xλ

r

)
(ln (xr))

2(
3 eβ xλ

r −2
)2 +

r∑
j=1

β xλ
j f2
(
β xλ

j

)
(ln (xj))

2(
eβ xλ

j − 1
)2 > 0,
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which implies that ℓ1 < ℓ2. Therefore, h2(λ) is an increasing function of λ. But h1(λ)

is a positive strictly decreasing function with right limit +∞ at 0. This insures that

h1(λ)=h2(λ) holds exactly once at some value λ = λ⋄. Hence, the theorem is proved.

Proof of Theorem 3.1

It follows from (29) that, the logarithm base e of π⋆
2(λ|x) without the additive constant

is given by

ln {π⋆
2(λ|x)} = (r + a2 − 1) ln (λ) +

(
r∑

j=1

ln (Xj)− b2

)
λ− ln

(
b1
2
+ T1

)
(r + a1) .

Therefore,
d2ln {π⋆

2(λ|x)}
dλ2

= −r+a2−1

λ2
− (r + a1)

∂2 ln {ξ(λ)}
∂ λ2

,

where ξ(λ) = b1
2
+ (n−r) xλ

r +
∑r

j=1 x
λ
j . In order to show that

d2ln{π⋆
2(λ|x)}

dλ2 < 0, it is

sufficient to show that ξ1 = ξ′′(λ) ξ(λ)−{ξ′(λ)}2 > 0. This is true, because

ξ1 =

(
b1
2
+ (n−r)xλ

r +
r∑

j=1

xλ
j

)(
(n−r) xλ

r (ln (xr))
2 +

r∑
j=1

xλ
j (ln (xj))

2

)

−

(
(n−r) xλ

r ln (xr) +
r∑

j=1

xλ
j ln (xj)

)2

,

=
b1
2

(
(n−r) xλ

r (ln (xr))
2 +

r∑
j=1

xλ
j (ln (xj))

2

)
+ (n−r) xλ

r

r∑
j=1

xλ
j

(
ln

(
xj

xr

))2

+
r∑

j=1

(
r∑

k=1

a (j, k)

)
, a (j, k) = ln (xk)x

λ
k x

λ
j (ln (xk)− ln (xj)) .

Since
∑r

j=1 (
∑r

k=1 a (j, k)) =
(∑r

j=1 a(j, j)
)
+
(∑r

j=1

∑r
k=j+1 (a(j, k) + a(k, j))

)
. Then,

ξ1 =
b1
2

(
(n−r)xλ

r (ln (xr))
2 +

r∑
j=1

xλ
j (ln (xj))

2

)
+ (n−r) xλ

r

r∑
j=1

xλ
j

(
ln

(
xj

xr

))2

+
r∑

j=1

(
r∑

k=j+1

xλ
k x

λ
j (ln (xk)− ln (xj))

2

)
> 0.

Hence, the theorem is proved.
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Table 1: Average estimates of β and the associated MSEs.

Bayes Prior 1 Bayes Prior 2
n r MLE

IS1 IS2 IS1 IS2

25 15 0.5535 0.5189 0.5381 0.5274 0.5381

(0.0134) (0.0144) (0.0129) (0.0109) (0.0101)

20 0.5432 0.5118 0.5411 0.5216 0.5413

(0.0104) (0.0122) (0.0099) (0.0097) (0.0083)

25 0.5405 0.5121 0.5478 0.5200 0.5456

(0.0096) (0.0115) (0.0091) (0.0092) (0.0077)

30 20 0.5476 0.4971 0.5256 0.5096 0.5291

(0.0093) (0.0119) (0.0097) (0.0093) (0.0080)

25 0.5427 0.4945 0.5362 0.5072 0.5362

(0.0083) (0.0112) (0.0082) (0.0088) (0.0072)

30 0.5412 0.4955 0.5412 0.5069 0.5397

(0.0079) (0.0108) (0.0075) (0.0087) (0.0067)

40 30 0.5447 0.4647 0.5117 0.4784 0.5149

(0.0060) (0.0125) (0.0071) (0.0098) (0.0063)

35 0.5428 0.4647 0.5236 0.4764 0.5250

(0.0057) (0.0121) (0.0060) (0.0097) (0.0055)

40 0.5421 0.4656 0.5294 0.4775 0.5279

(0.0056) (0.0116) (0.0056) (0.0095) (0.0051)

21



Table 2: Average estimates of λ and the associated MSEs.

Bayes Prior 1 Bayes Prior 2
n r MLE

IS1 IS2 IS1 IS2

25 15 0.8355 0.8570 0.8167 0.8264 0.8006

(0.0499) (0.0597) (0.0465) (0.0363) (0.0300)

20 0.8049 0.8248 0.7794 0.8063 0.7736

(0.0274) (0.0339) (0.0236) (0.0234) (0.0180)

25 0.7889 0.8056 0.7431 0.7943 0.7456

(0.0172) (0.0216) (0.0147) (0.0159) (0.0122)

30 20 0.8095 0.8477 0.7976 0.8223 0.7875

(0.0306) (0.0437) (0.0298) (0.0291) (0.0222)

25 0.7928 0.8278 0.7707 0.8093 0.7684

(0.0204) (0.0290) (0.0183) (0.0210) (0.0148)

30 0.7817 0.8123 0.7306 0.7995 0.7344

(0.0136) (0.0201) (0.0128) (0.0153) (0.0109)

40 30 0.7857 0.8543 0.7774 0.8318 0.7738

(0.0165) (0.0335) (0.0174) (0.0242) (0.0143)

35 0.7782 0.8400 0.7588 0.8248 0.7589

(0.0128) (0.0257) (0.0125) (0.0197) (0.0107)

40 0.7720 0.8272 0.7036 0.8151 0.7089

(0.0094) (0.0185) (0.0117) (0.0151) (0.0102)
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Table 3: Average estimates of s(0.9) and the associated MSEs.

Bayes Prior 1 Bayes Prior 2
n r MLE

IS1 IS2 IS1 IS2

25 15 0.8284 0.8570 0.8403 0.8487 0.8393

(0.0079) (0.0088) (0.0075) (0.0067) (0.0060)

20 0.8344 0.8601 0.8355 0.8517 0.8350

(0.0067) (0.0080) (0.0062) (0.0063) (0.0052)

25 0.8357 0.8590 0.8287 0.8523 0.8304

(0.0064) (0.0077) (0.0058) (0.0061) (0.0049)

30 20 0.8310 0.8727 0.8482 0.8618 0.8449

(0.0059) (0.0080) (0.0062) (0.0062) (0.0051)

25 0.8339 0.8736 0.8385 0.8629 0.8384

(0.0055) (0.0077) (0.0053) (0.0060) (0.0046)

30 0.8346 0.8722 0.8328 0.8627 0.8342

(0.0053) (0.0075) (0.0049) (0.0059) (0.0044)

40 30 0.8318 0.8985 0.8577 0.8866 0.8550

(0.0040) (0.0089) (0.0048) (0.0069) (0.0043)

35 0.8329 0.8978 0.8474 0.8879 0.8464

(0.0038) (0.0086) (0.0041) (0.0068) (0.0037)

40 0.8331 0.8966 0.8405 0.8866 0.8419

(0.0038) (0.0082) (0.0038) (0.0067) (0.0034)
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